植物的基础知识——输导组织

网上有关“植物的基础知识——输导组织”话题很是火热,小编也是针对植物的基础知识——输导组织寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

编者按:植物的基础知识,属于《药用植物学》的内容,是掌握《中药鉴定学》的基础。因此,我们为大家总结了一系列的植物学基本概念,以期帮助大家更好地掌握知识。

 输导组织:输导组织是植物体中输送水分、无机盐和营养物质的组织。其共同特点是细胞长形,常上下相连,形成适于输导的管道。

 (一)管胞与导管:是专管自下而上输送水分及溶于水中的无机养料的输导组织,存在于植物的木质部中。

 1.管胞:管胞是蕨类植物和绝大多数*子植物的输水组织,同时也兼有支持作用。有些被子植物或被子植物某些器官也有管胞,但不是主要的输导组织。管胞呈狭长形,两端尖斜,末端不穿孔,细胞无生命,细胞壁木质化加厚形成纹孔,以梯纹及具缘纹孔较为多见。管胞互相连接并集合成群,依靠纹孔(未增厚部分)运输水分。因此液流的速度缓慢,是一类较原始的输导组织。

 2.导管:导管是被子植物最主要的输水组织,少数*子植物如麻黄也有导管。导管是多数纵长的管状细胞连接而成,每个管状细胞称为导管分子,导管分子的侧面观与管胞极为相似,但其上下两端往往不如管胞尖细倾斜、而且相接处的横壁常贯通成大的穿孔,因而输导水分的作用远较管胞为快。细胞壁一般本质化增厚,形成的纹理或纹孔的不同而有环纹、螺纹、梯纹、网纹、单纹孔和具缘纹孔导管。

 环纹导管:增厚部分呈环状,导管直径较小,存在于植物幼嫩器官中。

 螺纹导管:增厚部分呈螺旋状,导管直径一般较小,多存在于植物幼嫩器官中。

 梯纹导管:增厚部分与未增厚部分间隔呈梯形,多存在于成长器官中。 考试大网站整理

 网纹导管:增厚部分呈网状,网孔是未增厚的细胞壁,导管直径较大,多存在于器官成熟部分。

 孔纹导管:细胞壁绝大部分巳增厚,未增厚处为单纹孔或具缘纹孔,前者为单纹孔导管,后者为具缘纹孔导管,导管直径较大,多存在于器官成熟部分。

 (三) 筛管与伴胞:是输送光合作用制造的有机营养物质到植物其它部分的输导组织,存在于植物的韧皮部中。

 1. 筛管:筛管是由一列纵行的长管状活细胞构成的,其组成的每一个细胞,称为筛管分子。筛管分子上下两端横壁由于不均匀地纤维素增厚而形成筛板,筛板上许多小孔,称为筛孔。上下相邻两筛管分子的细胞质,通过筛孔彼此相连,形成同化产物输送的通道。

 胼胝体:温带树木到冬季,在筛管的筛板处生成一种粘稠的碳水化合物,称为胼胝质,将筛孔堵塞形成胼胝体,这样筛管分子便失去作用,直到来年春,这种胶胝体被酶溶解而恢复其运输功能。

 筛管分子一般只能生活一两年,所以树木在增粗过程中老的筛管会不断地被新产生的筛管取代,老的筛管被挤压成为颓废组织,但在多年生单子叶植物中,筛管则可长期行使其功能。

 2. 伴胞:是位于筛管分子旁侧的一个近等长、直径较小的薄壁细胞。具浓厚的细胞质和明显的细胞核,并含有多种酶,筛管的输导机能与伴胞有密切关系。伴胞为被子植物所特有,蕨类及*子植物则不存在。

新手养花,这些入门攻略可收好了

编者按:植物的基础知识,属于《药用植物学》的内容,是掌握《中药鉴定学》的基础。因此,我们为大家总结了一系列的植物学基本概念,以期帮助大家更好地掌握知识。

 构造:一般光学显微镜下见到的细胞构造称为显微构造,而在电子显微镜下才能见到的构造称为超微构造(Ultrastructure)。超微构造的大小以埃计。为进一步了解植物组织和器官构造,并为中草药的显微鉴定打下基础,这里重点介绍植物细胞的显微构造,有时也要一般地介绍一些基本的超微构造。各种植物细胞的构造是不同的。就是上个细胞在不同的发育时期构造也有变化,所以不可能在一个细胞中同时看到细胞的一切构造。为了便于学习和掌握细胞的构造,现将各种植物细胞的主要构造都集中在一个细胞里示意说明,这个细胞称为模式的植物细胞。一个植物细胞,外面包围着没有生命的而比较坚韧的细胞壁,壁内的生活物质总称为原生质体。原生质体主要包括细胞质、细胞核、质体、线粒体等。此外,细胞中尚含有多种非生命的物质,它们是原生质体的产物,称为后含物。植物细胞和动物细胞的区别主要在于:植物细胞外面有一层主要由纤维素组成的细胞壁;有的细胞内具有能进行光合作用的叶绿体。

 (一)原主质体:原生质体是细胞内有生命物质的总称,它是形态学上的概念。原生质体分为细胞质、细胞核、质体和线粒体等部分。

 1. 细胞质:这里指的细胞质是原生质体中除了细胞核、质体和线粒体以外的原生质。它又可分为细胞质膜、中质、液泡膜三部分。

 (1)细胞质膜:在植物的生活细胞中,原生质体紧贴着细胞壁,所以不易见到细胞质膜,将细胞放在高渗溶液内,原生质体失水而收缩,并与细胞壁分离(即质壁分离),这时可见到原生质体的外表面具有一层透明的薄膜,称为细胞质膜(原生质膜)。细胞质膜与其它各种膜(如液泡膜、叶绿体膜、线粒体膜等等)有相似的成分和结构,它们是由类脂(主要是磷脂)和蛋白质组成。细胞质膜主要有两种特性:一是半透性,表现出一种渗透现象;二是通过一种由蛋自质或多肽形成的载体有选择地转运某些物质的特性。因而它既能阻止细胞内的许多有机物(如糖和可溶性蛋白)由细胞内渗出,同时又能调节水和盐类及其他营养物质进入细胞,并使废物排出。一旦细胞死亡,细胞质膜调节物质进出细胞的能力也随之消失,炒熟的苋菜有红色汁出来就是这个道理。

 (2)中质:在光学显微镜下可以看见在细胞质膜内是半透明而无色的粘滞液体,称为中质(细胞质膜与液泡膜之间的细胞质)。在幼小的细胞中细胞质占据着细胞腔的大部分,它既易失水而成凝胶状态,亦易被水稀释,例如种子内硬固的细胞质在萌发时即被水稀释。

 (3)液泡膜:随着细胞的生长在细胞质内出现了细胞液集聚的液泡。细胞质与液泡相隔处还有一层薄膜,称为液泡漠。它的组成和特性与细胞质膜相同。中质在细胞里总按一定的方式进行着运动,它的运动往往受环境条件的影响。邻近细胞壁受伤,容易刺激中质流动;其他如温度、光线、化学物质等等对中质运动都有影响。中质运动能够促进细胞内营养物质的流转,对细胞的通气、生长以及创伤的恢复,都有一定的促进作用。在电子显微镜下观察,中质并非纯一体,而是有一定的复杂结构,包括内质网、核糖核蛋白体、微管、高尔基体、圆球体、微粒体等细胞器。

 1)内质网(Endoplasmicreticulum)内质网是充满在细胞中的一个膜系统,膜的厚度约50埃,它通常成细管和小囊的形状。这些膜又分枝互相连成网状结构,一些分枝和核膜相连,另一些分枝和细胞质膜相连。内质网在细胞代谢中的作用不很清楚,但它是核糖核蛋白体集中分布的场所,故被认为对蛋白质的运输和贮存有关。

 2)核糖核蛋白体(Ribosomes)核糖核蛋白体是细胞中的超微颗粒,近圆球形,直径约100~200埃。在分生组织细胞中它们大多游离在中质中,在分化和成熟的细胞中,则多附着在内质网膜的外表面。核糖核蛋白体含有大约40%的蛋白质和60%的核糖核酸(Rlbonlicleicacid(RNA)〕。核糖核蛋自体是蛋臼质合成的场所。

 3)微管(Microtubules)在细胞质中靠近膜的位置,有细小伸长的结构入称为微管。其直径约为250埃,但也可延长到几个微米。微管的机能尚不够清楚,但从微管与细胞壁上的微纤丝都有整齐排列的相似性和微管集中的地方壁就发生特别加厚的现象,因而有人认为微管参与细胞壁纤维素微纤丝的沉积。

 4)高尔基体(Go1gibodies,Dictyosomes)高尔基体是细胞质中除了质体和线粒体外的其他细胞器之一。它是由很多小盘所组成,每一小盘为单层膜所包,它们的末端往往膨大,在盘的边缘四周有一排排的小泡,它们可能是小盘收缩而形成的。在高等植物中,木质素、果胶质及半纤维素这些细胞壁的基质物质是通过高尔基体小泡而沉积的。

 此外,尚有与脂肪的产生有关的圆球体(Spherosomes),具有酶催化特性、能将油和脂肪转化成碳水化台物而被植物利用的微粒体(Microsomes)等细胞器。

 2.细胞核:除细菌和蓝藻外,所有细胞都有细胞核。少数细胞(如筛管)在成熟的时候可失去细胞核。一般的细胞中只有一核,但也有多核的(如乳管)。细胞核在细胞中所占的大小比例和它的位置、形状,随着细胞的生长而变化。幼年细胞的细胞核在细胞质中占的体积比例较大,位于细胞质的中央,呈球形,随着细胞的长大,细胞核的体积比例渐次变小,当细胞质被增大了的液泡挤压到细胞的四周时。细胞核也随之被挤压到细胞的一侧,形状也常发生变化。细胞核可分为核膜、核仁、核液和染色质四部分。

 (1)核膜:是细胞核表面的一层薄膜。在电子显微镜下能见到核膜上的孔,核膜孔的张开或关闭与植物的生理活性有密切的关系。核膜的作用一般认为是把核中物质——主要是去氧核糖核酸(Deoxyribonucleicacid(DNA)〕与细胞质隔开而维持核内一定的代谢环境。而核膜孔又为细胞核和细胞质的物质交换提供了通道。

 (2)核液:核膜内充满着粘滞住较大的液胶体,称为核液。它的主要成分是聚合度较低的蛋白质。核仁和染色质就是分布在核液中。

 (3)核仁:是细胞核中折光率更强的小球体,有一个或几个。核仁主要是由蛋白质和核糖核酸(RNA)所组成。它的作用主要是产生核糖核蛋白体,然后转移到中质中去。

 (4)染色质:核中易被碱性染料染色的物质称为染色质。在不分裂的细胞核中染色质是不明显的,或者可以成为着色深的网伏物;当细胞核进行分裂繁殖的时候,染色质聚集成为染色体。染色质是由DNA和蛋自质所组成,而DNA又是遗传的主要物质基础,所以染色质与植物的遗传有重要的关系。现在一般已公认细胞核在控制机体特性遗传及控制和调节细胞内物质代谢途径方面起主导作用。失去细胞核的细胞就停止生长和代谢,不能进行繁殖,经光合作用形成的同化淀粉也不会溶解,且细胞生活的时间也很短,很快就会死亡。同样细胞核也不能脱离细胞质而孤立的生存。

 3.质体:质体是绿色植物才具有的结构,它与自养的营养方式密切有关,它是细胞质中分散的一些蛋白质和拟脂类的颗粒。在细胞中数目不一,可以自由分裂形成,也可由线粒体转变产生,它们的基本结构是蛋白质的基质,里面分布着色素,因为质体所含的色素不同,并执行不同的生理机能,可分为叶绿体、白色体、杂色体。

 (1)叶绿体:高等植物的叶绿体一般呈球形或扁圆形。叶绿体含有叶绿素、叶黄素、胡萝卜素,因为含叶绿素较多,所以呈绿色。它主要分布在绿色植物的叶和曝光的幼茎、幼果的基本组织中。它是进行光合作用和合成同化淀粉的场所。近来研究,认为叶绿体里面含有约30种酶,是酶的集中地,许多重要物质的合成和分解与叶绿体有密切关系,它不仅是合成碳水化合物,而且也合成蛋白质,是细胞内生化活动的中心之一。在电子显微镜下,叶绿体呈现一种复杂的超微结构,其外面有一个双层膜的包膜。在包膜里面为无色的基质,其中常有同化淀粉。基质中有若干基粒,基粒是由一系列双层膜片伏的类囊体重迭而成,叶绿素分子分布在膜上,构成片层结构。膜上井附有酶约30种。

 (2)白色体:是不含色素但含有多种酶的微小质体,多呈球形,但会变化。主要分布在不曝光的组织中,常聚集在细胞核附近。其外也有包膜,内部的类襄体不发达,即一般并不形成基粒。白色体与积累贮藏的物质有关,因而白色体包括合成贮藏淀粉的造粉体,合成脂防和油的造油体,以及合成贮藏蛋白质的蛋白质体。

 (3)杂色体:是含胡萝卜素及叶黄素(常显**、桔红或红色)的质体,常呈杆状、圆形或不规则形状。主要存在于花和果实中,也有在根中(如胡萝卜)。它的构造一般也有包膜,里面一般少或无基粒,在不发达的类囊体之间的基质中有胡萝卜素的拟晶体。有些杂色体充分发育时,包膜消失,只余下胡萝卜素的拟晶体,称为色素体。杂色体对植物的生理作用目前还不十分清楚,其中所含的胡萝卜素和叶绿素一样,在光合作用中都是催化剂。胡萝卜素也是动物获得维生素A的来源。

 以上三种质体在起源上均可由称为前质体的微粒衍生而来,而且它们之间在一定条件下可以转化。如辣椒和番茄的果实成熟时变成红色,这是因为叶绿体失去了叶绿素而转化为杂色体的缘故。

新手养花,这些入门攻略可收好了

说起养花的概念,主要还是集中在现代家庭园艺的大框架之下。这里要说的新手养花入门知识,是相当全面而且简洁的总结,要想把家里的花儿养得美美的,还是很有必要系统学习一下养花知识。

这篇入门攻略的核心,是以花卉植物本身特性为立足点,从认识、学习、分析、到实际操作的过程,属于理论加实践的结合。很多朋友喜欢养花却养不好花,也正是缺少一套较为全面的养花攻略。

养花以后,我们会经常有意无意去看看各种技巧,但单一方面的技巧也未必让花草生长得更好,同样是缺乏系统性导致的。养花技巧也是一种经验总结,不同地域、不同花草、不同环境等等,养花的技巧也会相应不同,所以不能生搬硬套。

不管什么花草都属于一种植物,那么我们就可以想想这种植物的生长是在一个什么样的环境、需要一些什么条件等等入手。

家庭园艺中花草生长所涉及的元素通常有温度、光照、水分、土壤、营养、空气等。操作层面上则涉及花盆选择、上盆、换盆、浇水、施肥、修剪、病虫害处理等。这些必要的元素与花草本身的属性相契合,就能轻松实现花儿们又快又好的生长。以下分别就各种元素作详细讲解。

植物属性

这才是养花的基础,了解自己栽种花草的特性,对于后面的操作是具有指导意义的。

对于家庭园艺栽种的观赏花草,植物属性与花卉分类相关联,相同的分类在植物属性以及栽种养护有很多相同之处。花卉的分类根据标准不同有多种分类。

养花主要关注生活型以及自然分布就好,生活型在于植物的生长环境,而自然分布则是生长环境的气候类型。

光照:大家都知道光是植物叶片进行光合作用的必要条件,也是植物生命持续的动力。光照对花草植物的影响体现在光照强度以及光照时间,而不同花草对光的适应性也是不同的。

光照强度:

同一种花卉的不同生长时期,所需要的光照也可能不一样,这就需要在养花之前了解清楚花卉属性。光照不足会使得植物徒长、多肉返绿、观花植物花少等。

徒长是植物失去原本矮壮的造型,茎叶疯狂伸长的现象。光照强度过大则表现为叶片灼伤。由光照强度决定花卉种植室内或室外、明亮或阴暗的环境。

光照时间:

光照时间对植物开花、结果有明显的影响。光照时间也就决定着花卉种植时间,长日照春种、短日照秋种。

温度

关于温度,有个三基点的说法,表现为最低温、最高温以及最适温,也就是我们常看到的植物介绍生长需要的温度区间。养过多肉的朋友应该听过越冬、越夏的说法,而这对应的也正是植物生长的温度区间的变化。另外,同一种植物不同生长阶段的温度区间也是不同,这也再次说明养花之前了解植物属性的重要性。

水分

“活不活在于水”,这是养花人具有共识的经验总结,也是体现了水是生命之源的重要性。根据植物属性选择浇水方法,比如喜欢干燥的多肉则向土壤灌水、喜欢空气湿度高的铁线蕨可以喷雾以及灌水。

家庭中养花,通常是在花盆之中,浇水要遵循“不干不浇、浇则浇透”的原则。浇水没有浇透会让花盆底部水分过少,根的生长就会集中于花盆上部,不利生长。

浇水过多土壤缺氧,容易烂根、掉叶。浇水多少可观察下雨多少与之相关,这也是立足植物自然生长观点的理解方式。关于水的选择,同样遵循自然原则。雨水、池塘水、河水之类。

方便的自来水则需要放置几天挥发花草容易过敏的氯气。浇水时间的选择有一个原则,水温与土温相近,以避免对植物根系的刺激

土壤/营养

“长不长在于肥”,反映的是植物的生长状态,活是一回事、长是另一回事。土壤与营养之间相辅相成,成为植物生长的基础。

土壤介质给植物提供的是根部的生长空间以及必要的营养供给,说起适合植物生长的土壤,不管园土、腐叶土、沙土……核心在于保水、保肥、透气。

这些才是植物生长所需要的,通过各种介质的相互配比制作出优质种花土。肥料常见类型为有机肥、控释肥以及无机肥。

有机肥适合作为花盆内基肥,控释肥则适合作为基肥以及追肥,而无机肥适合作为追肥使用。肥料的使用根据植物花卉生长状态以及生长周期确定。

空气

特性变化主要体现在通风透气性以及空气湿度的变化。

总结一下,主要介绍的是养花的攻略体系以及一些基本概念普及,而这些是建立在一定植物学常识之上的,了解一些基本的植物生长知识可以更加轻松地养好这些花草植物。

关于“植物的基础知识——输导组织”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(0)
上一篇 2024年03月27日
下一篇 2024年03月27日

相关推荐