关于雷达的小知识

网上有关“关于雷达的小知识”话题很是火热,小编也是针对关于雷达的小知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1. 雷达的课外小知识

雷达的课外小知识 1.雷达的知识有哪些

我们的耳朵只能分辨频率为二十至二万赫的声音,频率比人的听频范围高的声波就叫做超声波。不同的动物可听到的声波频率范围不尽相同。狗可以听到一些超声波,所以狗只训练员可以用超声波哨子呼唤狗儿。超声波对于蝙蝠更为重要,这种动物是靠超声波来「看」世界的!

蝙蝠先会发出一连串超声的尖叫声,声波遇到障碍物便会反射,就像我们向山谷拍手会听到回声一样。由于超声波的频率高,相对较少出现绕射现象,所以回声十分清晰。蝙蝠分析回声的方向和回传时间,便可以知道环境的精确图像。人们根据蝙蝠「看」事物的原理,发明了声纳探测器,用来测量水深。船只上的发射器先向海底发射超声波,再由另一些仪器接收和分析反射回来的讯息,从而得到整个海床的面貌。

医学的超声波扫描术可说是超声波最重要的应用。超声波扫描不涉及有害的辐射,远比 X-射线等检验工具安全,所以常用于产前检查 (右图)。医生会将一个发出高频超声波 (频率为1-5 兆赫) 的手提换能器,贴着母亲的肚皮进行扫描。声波到达各种身体组织的边界时会有不同程度的反射 (例如液体及软组织的边界、软组织及骨的边界)。接收器收到反射波,便可计算出反射的强度及反射面的距离,以分辨不同的身体组织,并得到胎儿的影像。接收器使用了压电的原理,把超声波所产生的压力转变成电子讯号,再输送到仪器分析。超声波扫描可以帮助医生量度胎儿的大小以确定产期,检查胎儿的性别、生长速度、头的位置是否正常向下、胎盘的位置是否正常、阳水是否足够,与及监察抽阳水的过程,以保障胎儿的安全等。此外,超声波扫描术也用于妇科检查,它可以帮助医生有效地把生长在 *** 或卵巢的恶性组织分辨出来。

超声波扫描术的两个重要分支-多普勒超声波扫描术和立体超声波成像技术,更扩大了超声波在医学上的用途。

多普勒超声波扫描术已应用了颇长的时间,这技术利用了波动的多普勒效应。反射超声波物体的运动,会改变回声的频率;当物体正向着接收器移动时,频率便会升高,相反当物体正在远去时,频率便会降低。从回声的频率改变,仪器便可计算到物体的运动速度。多普勒超声波扫描术主要用于检查血液在心脏及主要动脉中的流动速度。血液的流动情况会以一个颜色的影像显示出来,不同的颜色代表不同的流速 (右图)。这有助医生及早发现胎儿先天性心脏毛病。

立体超声波成像技术是很新的技术。检查员首先从多个不同角度拍摄胎儿的二维超声波影像,然后利用计算机技术合成胎儿的立体影像。利用这技术可清晰地显示胎儿的样貌 (下图),甚至摄录到胎儿细致如踢脚或转身等动态,实在为准父母带来不少惊喜。外表的缺憾如兔唇、多指甚至细如斑痣等都可以清楚地显示出来。立体成像技术将会成为未来超声波技术研究的重点。

此外,高频的超声波带有强大的振动能。将超声波入射载满水的容器,再放入需要的清洗的对象,水的振动便可去除对象上的尘垢,而不需直接接触对象的表面。眼镜公司替我们洗眼镜时就是用这种方法。如果将高能超声波聚焦,能量甚至足以震碎石块,所以可以用来击碎体内结石,使患者免受手术之苦。

2.蝙蝠和雷达日常生活小常识

蝙蝠

蝙蝠是一种哺乳动物,头部和躯干像老鼠,四肢和尾部之间有皮质的膜,夜间在空中飞翔,吃蚊、蛾等昆虫。视力很弱,靠本身发出的超声波来引导飞行。

雷达

雷达是利用极短的无线电波进行探测的装置。无线电波传播时遇到障碍物就能反射回来,雷达就根据这个原理,把无线电波发射出去再用接收装置接收反射回来的无线电波,这样就可以测定目标的方向、距离、大小等,接收的电波映在指示器上可以得到探测目标的影像。雷达在使用上不受气候条件的影响,广泛应用在军事、天文、气象、航海、航空等方面。

超声波

超声波是超过人能听到的最高频(20 000赫兹)的声波。超声波沿直线传播,有方向性,并能反射回来,对物体有破坏性。广泛应用在各技术部门。

仿生学

仿生学是研究生物系统的结构和性质,以为工程技术提供新的设计思想及工作原理的科学,属于生物学和技术学相结合的交叉学科。只要生物有奇特的本领,就成为仿生学所涉猎的目标,现已发展出昆虫仿生学、海洋生物仿生学、设计仿生学、化学仿生学、分子仿生学等。仿生学的研究成果被广泛运用于军事、医学、制造、航空等方面,涉及到各种类型的科学领域,与人类的生产、生活、未来发展有着十分密切的关系。它作为一门独立的学科,形成于20世纪60年代。

3.小学学的一篇课文,介绍雷达原理的

《蝙蝠与雷达》

清朗的夜空出现两个亮点,越来越近,才看清楚是一红一绿的两盏灯。接着传来了隆隆声,这是一加飞机在夜航。

在漆黑的夜里,飞机怎么能安全飞行呢?原来是人们从蝙蝠身上得到了启示。

蝙蝠在夜里飞行,还能捕捉飞蛾和蚊子;而且无论怎么飞,从来没见过它跟什么东西相撞,即使一根极细的电线,它也能灵巧地避开。难道它的眼睛特别敏锐,能在漆黑的夜里看清楚所有的东西吗?

为了弄清楚这个问题,一百多年前,科学家做了一次试验。在一间屋子里横七竖八地拉了许多绳子,绳子上系着许多铃铛。他们把蝙蝠的眼睛蒙上,让它在屋子里飞。蝙蝠飞了几个钟头,铃铛一个也没响,那么多的绳子,它一根也没碰着。

科学家又做了两次试验。一次把蝙蝠的耳朵塞上,一次把蝙蝠的最封住,让它在屋子里飞。蝙蝠就像美头苍蝇似的到处乱撞,挂在绳子上的铃铛响个不停。三次不同的试验证明,蝙蝠夜里飞行,*的不是眼睛,它是用嘴和耳朵配合起来探路的。

科学家经过反复研究,终于揭开了蝙蝠能在夜里飞行的秘密。它一边飞,一边从嘴里发出一种声音。这种声音叫做超声波,人的耳朵是听不见的,蝙蝠的耳朵却能听见。超声波像波浪一样向前推进,遇到障碍物就反射回来,传到蝙蝠的耳朵里,蝙蝠就立刻改变飞行的方向。

科学家模仿蝙蝠探路的办法,给飞机装上了雷达。雷达通过天线发出无线发出无线电波,无线电波遇到障碍物就反射回来,显示在荧光屏上。驾驶员从雷达的荧光屏上,能够看清楚前方有没有障碍物,所以飞机在夜里飞行也十分安全。

4.关于雷达的知识

雷达

雷达是20世纪人类在电子工程领域的一项重大发明。雷达的出现为人类在许多领域引入了现代科技的手段。

1935年2月25日,英国人为了防御敌机对本土的攻击,开始了第一次实用雷达实验。当时使用的媒体是由BBC广播站发射的50米波长的常规无线电波,在一个事先装有接收设备的货车里,科研人员在显示器上看到了由飞机反射回来的无线电信号的回波,于是雷达产生了。

雷达是利用极短的无线电波进行探测的,雷达的组成部分有发射机、天线、接收机和显示器等。由于无线电波传播时,遇到障碍物就能反射回来,雷达就根据这个原理把无线电波发射出去,再用接收装置接收反射回来的无线电波,这样就可以测定目标的方向、距离、高度等。最初雷达主要用于军事。第二次世界大战期间,英国在海岸线上建起了雷达防御网络。这些早期的雷达使英国人能够不断地成功抗击德军破坏性的空中和海底袭击。

雷达被人们称为千里眼。在现代战争中,由于雷达技术的进步,使交战双方在相距几十公里,甚至上百公里,人还互相看不到,就已拉开了空战序幕,这就是现代空战利用雷达的一个特点――超视距空战。

由于雷达自身的工作原理,造成了雷达在使用中存在有捕捉对象的盲区,这也就有了在战争中利用雷达盲区偷袭成功的战例。现代战争中,为了躲避雷达的监视,美国生产出了一种隐形轰炸机,它可以有效驱散雷达信号,使它对于常规的雷达系统保持隐形。正是由于这种矛与盾的关系,科学家在这个领域不断探索研制分辨能力更高的雷达。

5.给我科普一下雷达的知识

雷达(Radar,即 radio detecting and ranging),意为无线电搜索和测距。

它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。

雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键之一;信号处理器是雷达具有多功能能力的核心组件之 雷达种类很多,可按多种方法分类: (1)按定位方法 可分为:有源雷达、半有源雷达和无源雷达。

(2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。

(4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。

相控阵雷达是一种新型的有源电扫阵列多功能雷达。它不但具有传统雷达的功能,而且具有其它射频功能。

有源电扫阵列的最重要的特点是能直接向空中辐射和接收射频能量。它与机械扫描天线系统相比,有许多显著的优点。

例如、相控阵省略了整个天线驱动系统,其中个别部件发生故障时,仍保持较高的可靠性,平均无故障时间为10万小时,而机械扫描雷达天线的平均无故障时间小于1000小时。

6.关于蝙蝠和雷达的知识

雷达是一种神奇的电学器具,它由电磁波往返时间,测得阻波物的距离。假如你问雷达是谁发明的?在芬克的雷达机械中说,“雷达的发明,不能专归于某一位科学家,乃是许多无线电学工程师努力研究,加以调准而成。”在战时,美国麻省理工学院由五百位科学家和工程师致力于雷达的研究。希奇得很,在自然界中,你找得到神为某种动物所豫备的雷达。在一九四七年一月号的英国奋勉杂志上,科学家B. Vesey-Fitzgerald 发表了一篇很有趣的文本,给我们解释蝙蝠在黑暗中如何指导自己飞行,不论如何黑暗,如何狭窄的地方,绝不碰壁,这是什么原因?它怎样知道前面有无障碍呢?关于这事有两位美国生物学家格利芬和迦朗包在一九四○年已经证明,蝙蝠能够避免碰撞,是藉一种天然雷达,不过是声波代替电磁波,在原理方面完全相仿。从蝙蝠口中发出一种频率极高的声波,超过人类听觉范围以外,二位科学家藉着一种特制的电力设备,在蝙蝠飞行时,将它所发的高频率声波记录出来。这种声波碰到墙上,必然折回,它的耳膜就能分辨障碍物的距离远近,而向适宜方向飞去。蝙蝠传输声波也像雷达一样,都是相距极短的时间而且极有规则,并且每只蝙蝠,有其固有的频率,这样蝙蝠可分清自己的声音,不至发生扰乱。因这缘故,蝙蝠飞行之时,常是张口,假如你将它口紧闭,它便失去指挥作用,假如堵上它的耳朵,便要撞到墙上,无法飞行。这个有趣的实验,道破了它的秘密。

会飞的“活雷达”

蝙蝠善于在空中飞行,能作圆形转弯、急刹车和快速变换飞行速度等多种“特技飞行”。白犬,隐藏在岩穴、

树洞或屋檐的空隙里;黄昏和夜间,飞翔空中,捕食蚊、蝇、蛾等昆虫。蝙蝠捕食大量的害虫,对人有益,理应得

到保护。

到了夏季,雌蝙蝠生出一只发育相当完全的幼体。初生的幼体长满了绒毛,用爪牢固地挂在母体的胸部吸乳,

在母体飞行的时候也不会掉下来。

蝙蝠有用于飞翔的两翼,翼的结构和鸟翼不相同,是由联系在前肢、后肢和尾之间的皮膜构成的。前肢的第二、

三、四、五指特别长,适于支持皮膜;第一指很小,长在皮膜外,指端有钩爪。后肢短小,足伸出皮膜外,有五趾,

趾端有钩爪。休息时,常用足爪把身体倒挂在洞穴里或屋檐下。在树上或地上爬行时,依靠第一指和足抓住粗糙物

体前进。蝙蝠的骨很轻,胸骨上也有与鸟的龙骨突相似的突起,上面长着牵动两翼活动的肌肉。

蝙蝠的口很宽阔,口内有细小而尖锐的牙齿,适于捕食飞虫。它的视力很弱,但是听觉和触觉却很灵敏。一些

实验证明,蝙蝠主要靠听觉来发现昆虫。蝙蝠在飞行的时候,喉内能够产生超声波,超声波通过口腔发射出来。当

超声波遇到昆虫或障碍物而反射回来时,蝙蝠能够用耳朵接受,并能判断探测目标是昆虫还是障碍物,以及距离它

有多远。人们通常把蝙蝠的这种探测目标的方式,叫做“回声定位”。蝙蝠在寻食、定向和飞行时发出的信号是由

类似语言音素的超声波音素组成。蝙蝠必须在收到回声并分析出这种回声的振幅、频率、信号间隔等的声音特征后,

才能决定下一步采取什么行动。

靠回声测距和定位的蝙蝠只发出一个简单的声音信号,这种信号通常是由一个或二个音素按一定规律反复地出

现而组成。当蝙蝠在飞行时,发出的信号被物体弹回,形成了根据物体性质不同而有不同声音特征的回声。然后蝙

蝠在分析回声的频率、音调和声音间隔等声音特征后,决定物体的性质和位置。

蝙蝠大脑的不同部分能截获回声信号的不同成分。蝙蝠大脑中某些神经元对回声频率敏感,而另一些则对二个

连续声音之间的时间间隔敏感。大脑各部分的共同协作使蝙蝠作出对反射物体性状的判断。蝙蝠用回声定位来捕捉

昆虫的灵活性和准确性,是非常惊人的。有人统计,蝙蝠在几秒钟内就能捕捉到一只昆虫,一分钟可以捕捉十几只

昆虫。同时,蝙蝠还有惊人的抗干扰能力,能从杂乱无章的充满噪声的回声中检测出某一特殊的声音,然后很快地

分析和辨别这种声音,以区别反射音波的物体是昆虫还是石块,或者更精确地决定是可食昆虫,还是不可食昆虫。

当2万只蝙蝠生活在同一个洞穴里时,也不会因为空间的超声波太多而互相干扰。蝙蝠回声定位的精确性和抗

干扰能力,对于人们研究提高雷达的灵敏度和抗干扰能力,有重要的参考价值。

7.怎样快速掌握雷达的知识,方式或方法,书籍也行,要那种浅显易懂的

雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。

测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。

测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

8.关于雷达的资料

雷达被称为“无线电定位”。

是利用电磁波探测目标的电子设备。雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",用无线电的方法发现目标并测定它们的空间位置。

因此,雷达也被称为“无线电定位”。雷达利用电磁波探测目标的电子设备。

雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。多用于:军事作战指挥、民用航行引导首次运用是在 第二次世界大战中雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。

事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

科普:摸一摸就诊断乳腺增生,靠谱吗?

2021年3月1日? 星期一? 晴

这一年多来我在北京主要是学习妇科内分泌和生殖内分泌,主要是在门诊看更年期、多囊卵巢综合征、月经紊乱、不孕不育、辅助生殖等,几乎妇科80%以上的疾病我都能够看了。于是,我想再在超声科、男科、遗传实验室等科室再去看看,当然最迫切想看的地方还是超声科。我妇科内分泌的启蒙老师告诉我自己学会监测卵泡,学会看子宫附件的常见的病理影像,这对于自己的妇科专业无疑是非常好的一个补充。

听老师一言胜读十年书,她这么一说,我马上就开始行动了。先跟北三医院生殖中心管教学的老师申请了,她非常支持,马上跟超声科的负责人打了声招呼,于是,我早上就直接到王老师那里去报道了,王老师了解我的情况后让我在门诊的三个超声诊室轮转,说最后一两个星期就亲自带我做超声,其中还包括超声下的输卵管造影,让我感受一下操作手法。

超声科的老师真的非常好,她们觉得我们出来学习的机会很难得,时间太宝贵了,总希望能够帮助到我们这些出门远游的学子。给我的教学安排得详尽而周到,她们边给病人做检查,边跟我仔细讲解,我学得也非常开心。我终于可以和超声波进行近距离接触了,圆了我很久以来的梦想。其实,妇科和超声联系非常紧密,妇科医生学会自己做超声也是一项基本功,对于疾病的诊断有着非常重要的作用。同时,还可以对超声科医生的报告进行把关。

不过,我刚开始工作时很看不起超声,认为没技术成分,只是靠仪器看图而已。但工作久了深刻体会到超声在妇科领域里的巨大作用,妇科超声也是最复杂的,也最有挑战性。并不是我曾经想象的那么简单。

超声波,是一种利用声波成像的检查方法。通过超声检查可以判定人体内脏器的活动功能,对于子宫肌瘤、子宫体癌、卵巢囊肿、盆腔肿块有很好的诊断效果。我从事妇产科临床工作20多年了,对于盆腔脏器的解剖还是非常熟悉的,以前在开腹手术中,经常触摸子宫及双附件,后来做腹腔镜、宫腔镜也经常看到这些器官的三维立体图像,对它们真是非常熟悉。

然而,常规B超看到的是二维图像,即使我们这些妇产科医生最开始看B超的时候,也不一定能够识别子宫、卵巢等器官,它是在一个横截面上看器官的一个部分。二维的图像和三维的影像差别还是挺大的。

这一年多我跟着内分泌和生殖的老师经常看她们做超声监测卵泡,因此,大致的图像我还是会看的,不像以前连卵巢都辨识不清的。不过对于一些附件包块的影像还不是很会看,这究竟是伪像还是病灶?若是病灶,是良性还是恶性?是良性考虑炎性还是良性占位性?是恶性考虑是什么来源……这一系列的问题需超声医生在短短的几分钟内脑子高速转动,分析后得出初步结论。其实,做B超医生真没有我们临床医生想象的那么简单。

超声与放射、CT、MRI都属于影像学,超声与它们相比,其优点有:无创、经济、可重复性好、实时显像。缺点:即时出报告、受肠腔气体及病人透声条件、体形肥胖干扰极大、病情的不同时期有不同的超声显像。因此,有时候超声显示不太清楚,性质不太明确的时候,我们也常常会建议患者做MRI,即核磁共振。

在临床上遇到许多患者常常提一些问题,比如经阴道B超和腹部B超哪个好?超声检查的方法(途径)有多种,常用的有经腔内(经阴道或经直肠)、经腹部、经会阴及经宫腔超声检查等。已婚妇女常用经阴道超声检查,未婚女性经直肠超声检查常用。

经腹部超声检查时,常常需要等待膀胱充盈才能检查,且多数情况下,超声声像图不如经腔内超声的声像图清晰,故目前用得较少。经腔内超声检查(包括经阴道、经直肠)比经腹部超声检查分辨率更高,图像更清晰,故在妇科检查为常用。比如子宫内膜异位症是妇科的常见病、多发病,有了阴超就更能确诊了。

不过,经腹部超声检查也有一些优点,其扫描的范围更广,对于较大的占位性病变,经腹部超声检查图像反而更清晰。因此,在检查方式的选择上,患者要听临床医生的建议,医生会根据具体情况做出最佳决定。

还有些患者经常问:黑白B超好还是彩超好?妇科B超,一般采用普通超声声像图(即所谓的黑白超声)。但是,有时需要彩色多普勒(就是常说的彩超)检测病变部位的血流情况,以协助诊断。“彩色超声”的优点是:图像显示清晰度高、分辨率好,可以检测病变部位的血流是否丰富、彩色血流的分布形态及血流的流速、阻力等,这些对妇科疾病的鉴别诊断非常重要。譬如对常见的子宫内膜息肉、内膜癌、内膜增生、甚至不全流产等的鉴别方面,血流检测都很重要。特别是对于不孕患者看子宫内膜血流,看内膜血供,对于临床的诊治的作用也是非常大的。

彩超的全称为彩色多普勒超声,不是想象中的“黑白”与“彩色“颜色上的区别。打个小小比方,常见宫内早孕,我们临床医生可能觉得这是一个最简单的毛病,最易诊断,但超声诊断原则为宫内暗区一定要有妊娠标志卵黄囊(孕期较短)或胚芽并见胎心管搏动(孕期相对较长)时才能确诊,否则就有假孕囊宫外孕的可能,而这些妊娠标记黑白超声与彩超机子的分辨率完全不同,黑白超可能看不到卵黄囊(孕期较短),因此一定得复查一次才能确定,而彩超可能一次就可以确定了。

妇科的解剖很简单,但超声诊断却有些难度。比如有时输卵管上的包块(性质不定)较大与卵巢重叠易误认为是卵巢上来源的,有时卵巢来源的包块突出于卵巢表面会误认为卵巢旁来源的。这就需要仔细看包块周围有无卵巢组织。其实有很多附件包块若能和临床结合考虑的话,可以让患者少走很多弯路,少花很多冤枉钱,还能少受很多冤枉手术!

而且不同病不同时期会有不同的超声表现,如宫外孕:未破裂未流产与流产型、破裂型的图像不同;卵巢内黄体不同的孕期图像不同;炎性包块不同的病程图像不一样,易与占位性病变混淆。然而这些图像还得据临床表现及其它检查综合考虑到底是什么病征。要超声医生凭图诊断的难度极大,更何况手法技巧没有五年的功底还不一定能打到病灶的切面。

还有患者问超声是不是能诊断所有妇科疾病?妇科超声优点很多,在妇科检查中非常重要。比如,子宫平滑肌瘤是常见的妇科良性肿瘤,超声检查可以测量肌瘤大小、数量以及肌瘤生长部位等,非常有助于疾病诊断。有的肌瘤回声发生改变,可能发生了变性,比如发生了囊性变、脂肪变、红色变性等,超声可以协助诊断其中某些变性。在诊断卵巢、输卵管、外阴及阴道的占位性疾病等方面,超声检查也很重要。

无疑,妇科超声检查在妇科疾病诊治中非常重要。但这并不是说只靠超声检查就能诊断所有妇科疾病。超声不是万能的,不是单纯的看图说话。临床医生还要结合患者症状、体征及实验室检查结果等,综合起来才能对妇科疾病做出客观诊断,并提出合理的治疗措施。

第一天在超声科学习,心情特别好,原来学习非本专业的一些知识也是令人开怀的,触类旁通,学科之间其实联系得非常紧密,多多学习相关专业,对于知识的融会贯通是会有很大作用的。难怪孔子说“学而时习之,不亦乐乎”,学习的确是一件愉快的事情。

超声波对人类的帮助

乳腺增生

乳腺增生是指乳腺上皮和纤维组织增生,乳腺组织导管和乳小叶在结构上的退行性病变及进行性结缔组织的生长,其发病原因主要是由于内分泌激素失调。

乳腺增生本身是一个病理学的术语,是显微镜下观察细胞的变化,然后得出的一种病理诊断名称。

所以医生用手摸一下乳房,超声医生看一下图像,放射科医生拍一张片子就得出“乳腺增生”的结论都是不科学的。

世界卫生组织推荐使用的“良性乳腺结构不良”这个名称,可能对患者而言更易理解,且不易引起不必要的恐慌。建议超声、钼靶报告,不要盲目诊断乳腺增生,而应推广使用乳腺影像分类诊断系统(BI-RADS)。

乳腺报告上的“BI-RADS”是什么意思?

BI-RADS(Breast imaging reporting and data system)即美国放射学会推荐的“乳腺影像报告和数据系统”,这样的报告更加规范化。BI-RADS是一种非常简便有效的筛查乳腺癌的手段,每个钼靶报告都会有一个BI-RADS分级,用以表示乳腺包块恶性的可能性有多大。0~3级不需要太担心,恶心可能性很小;4级以上需要立刻找乳腺外科医生就诊。

0级: 需要召回,结合其他检查后再评估。说明检查获得的信息可能不够完整。

I级: 未见异常。

II级: 考虑良性改变,建议定期随访(如每年一次)。

III级: 良性疾病可能,但需要缩短随访周期(如3~6个月一次)。这一级恶性的比例小于2%。

IV级: 有异常,不能完全排除恶性病变可能,需要活检明确。

IVa级: 倾向恶性可能性低。

IVb级: 倾向恶性可能性中等。

IVc级: 倾向恶性可能性高。

V级: 高度怀疑为恶性病变(几乎认定为恶性疾病),需要手术切除活检。

VI级: 已经由病理证实为恶性病变。

当然,上述只是从影像学中判断乳腺疾病的程度,具体情况应当结合临床医师的判断来综合分析。

乳腺增生哪些检查方法?

1、超声检查

这是一种初步筛检乳房肿瘤(结节)的检查手段,当怀疑乳腺有肿块时,彩超检查是必须做的。超声检查能用来判断肿块性质和位置,但它对直径较小的肿块识别能力较差,如果单做这项检查的话,可能会错过较小的肿块。

2、钼靶

将乳房夹在钼靶机的托板上,拍下乳房内的清晰图像,可检查出一些用手摸不出来的细小肿瘤。女性在40岁以后,每年都该做钼靶检查,可以将乳腺癌患者的死亡率降低30%~40%。钼靶的缺点是,检查时要将整个乳房压扁透视,如果患者乳腺腺体丰富,腺体会与病变会重叠在一起,分不出来是腺体还是病变。此时可以考虑进行MRI检查。

3、活检

以下几种情况就需要考虑做活检了:超声、钼靶发现肿块,性质不明确,就需要通过活检明确是良性还是恶性;高度怀疑是乳腺癌,准备做新辅助化疗的治疗前,需要取活检送病理检查,证实是乳腺癌,同时做乳腺癌的生物学指标检查。

活检证实为乳腺癌的患者,如果乳腺组织致密,以致无法评估疾病范围时,可以考虑进行MRI检查,以便发现乳腺内是否有其他部位的病变。

4、MRI检查

乳腺的核磁共振检查(MRI):对于活检已经证实为为乳腺癌,但由于乳房组织比较致密,钼靶没有办法看清楚,那么此时可以进行MRI检查,以便发现乳腺原发病灶。

今日科普的小知识get了么?

超声波百科名片超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距,测速,清洗,焊接,碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。 目录[隐藏]超声波的简介 超声波的产生 超声波的主要参数 超声波的作用 超声波清洗原理 医学 超声学超声应用 超声波的特点 超声波的发展史 相关的文章 超声波清洗技术的应用 超声波的简介超声波的产生超声波的主要参数超声波的作用 超声波清洗原理 医学 超声学超声应用超声波的特点超声波的发展史相关的文章超声波清洗技术的应用

[编辑本段]超声波的简介科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫兹。

理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度.这就是超声波加湿器的原理.咽喉炎.气管炎等疾病,呼唤斤年时斤百 很难血流到达患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效.利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。超声波在医学方面应用非常广泛,像现在的彩超、B超、碎石(例如胆结石、肾结石祛眼袋 之类的)等。

[编辑本段]超声波的产生声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。 超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,目前腹部超声成象所用的频率范围在 2∽5兆Hz之间,常用为3∽3.5兆Hz(每秒振动1次为1Hz,1兆Hz=10^6Hz,即每秒振动100万次,可闻波的频率在16-20,000HZ 之间)。超声波是声波大家族中的一员。

超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。

频率高于2×104赫的声波。研究超声波的产生、传播、接收,以及各种超声效应和应用的声学分支叫超声学。产生超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。 [编辑本段]超声波的主要参数超声波的两个主要参数: 频率:F≥20K/Hz; 功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2; 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。 太小的声强无法产生空化效应。 [编辑本段]超声波的作用 超声波清洗原理

清洗的超声波应用原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡(空化核)在声场的作用下振动,当声压达到一定值时,气泡迅速增长,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压力,破坏不溶性污物而使它们分散于清洗液中,当团体粒子被油污裹着而粘附在清洗件表面时,油被乳化,固体粒子即脱离,从而达到清洗件表面净化的目的。

虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“声呐”判断飞行前方是昆虫,或是障碍物的。而雷达的质量有几十,几百,几千千克,,而在一些重要性能上的精确度.抗干扰能力等,蝙蝠远优与现代无线电定位器.深入研究动物身上各种器官的功能和构造,将获得的知识用来改进现有的设备,这是近几十年来发展起来的一门新学科,叫做仿生学.

我们人类直到第一次世界大战才学会利用超声波,这就是利用“声呐”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。

医学

医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。

目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。

A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。

B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。

M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。

D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔是否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。

超声学

研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、

以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。

超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生

一系列力学的、热学的、电磁学的和化学的超声效应,包括以下4种效应:

①机械效应。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。

②空化作用。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而产生高温、高压,同时产生激波。与空化作用相伴随的内摩擦可形成电荷,并在气泡内因放电而产生发光现象。在液体中进行超声处理的技术大多与空化作用有关。

③热效应。由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。

④化学效应。超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学物质的水解、分解和聚合过程。超声波对光化学和电化学过程也有明显影响。各种氨基酸和其他有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈均匀的一般吸收,这表明空化作用使分子结构发生了改变 。 [编辑本段]超声应用超声效应已广泛用于实际,主要有如下几方面:

①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收器上,所得电信号输入放大器,利用扫描系统可把不透明试样的形象显示在荧光屏上。上述装置称为超声显微镜。超声成像技术已在医疗检查方面获得普遍应用,在微电子器件制造业中用来对大规模集成电路进行检查,在材料科学中用来显示合金中不同组分的区域和晶粒间界等。声全息术是利用超声波的干涉原理记录和重现不透明物的立体图像的声成像技术,其原理与光波的全息术基本相同,只是记录手段不同而已(见全息术)。用同一超声信号源激励两个放置在液体中的换能器,它们分别发射两束相干的超声波:一束透过被研究的物体后成为物波,另一束作为参考波。物波和参考波在液面上相干叠加形成声全息图,用激光束照射声全息图,利用激光在声全息图上反射时产生的衍射效应而获得物的重现像,通常用摄像机和电视机作实时观察。

②超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。

③基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——

声波是属于声音的类别之一,属于机械波,声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。

超声波具有如下特性:

1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。

2) 超声波可传递很强的能量。

3) 超声波会产生反射、干涉、叠加和共振现象。

4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。

超声波是声波大家族中的一员。

声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。譬如,鼓面经敲击后,它就上下振动,这种振动状态通过空气媒质向四面八方传播,这便是声波。

超声波是指振动频率大于20KHz以上的,人在自然环境下无法听到和感受到的声波。

超声波治疗的概念:

超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的。

在全球,超声波广泛运用于诊断学、治疗学、工程学、生物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范畴。

(一)工程学方面的应用:水下定位与通讯、地下资源勘查等 。

(二)生物学方面的应用:剪切大分子、生物工程及处理种子等 。

(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等 。

(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等 。 [编辑本段]超声波的特点(一)超声波在传播时,方向性强,能量易于集中。

(二)超声波能在各种不同媒质中传播,且可传播足够远的距离。

(三)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。(治疗)

超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。 [编辑本段]超声波的发展史一、国际方面:

自19世纪末到20世纪初,在物理学上发现了压电效应与反压电效应之后,人们解决了利用电子学技术产生超声波的办法,从此迅速揭开了发展与推广超声技术的历史篇章。

1922年,德国出现了首例超声波治疗的发明专利。

1939年发表了有关超声波治疗取得临床效果的文献报道。

40年代末期超声治疗在欧美兴起,直到1949年召开的第一次国际医学超声波学术会议上,才有了超声治疗方面的论文交流,为超声治疗学的发展奠定了基础。1956年第二届国际超声医学学术会议上已有许多论文发表,超声治疗进入了实用成熟阶段。

二、国内方面:

国内在超声治疗领域起步稍晚,于20世纪50年代初才只有少数医院开展超声治疗工作,从1950年首先在北京开始用800KHz频率的超声治疗机治疗多种疾病,至50年代开始逐步推广,并有了国产仪器。公开的文献报道始见于1957年。到了70年代有了各型国产超声治疗仪,超声疗法普及到全国各大型医院。

40多年来,全国各大医院已积累了相当数量的资料和比较丰富的临床经验。特别是20世纪80年代初出现的超声体外机械波碎石术和超声外科,是结石症治疗史上的重大突破。如今已在国际范围内推广应用。高强度聚焦超声无创外科,已使超声治疗在当代医疗技术中占据重要位置。而在21世纪(HIFU)超声聚焦外科已被誉为是21世纪治疗肿瘤的最新技术。

超声波治病机理:

1.机械效应:超声在介质中前进时所产生的效应。(超声在介质中传播是由反射而产生的机械效应)它可引起机体若干反应。超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。使细胞内部结构发生变化,导致细胞的功能变化,使坚硬的结缔组织延伸,松软。

超声波的机械作用可软化组织,增强渗透,提高代谢,促进血液循环,刺激神经系统和细胞功能,因此具有超声波独特的治疗意义。

2.温热效应:人体组织对超声能量有比较大的吸收本领,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。

产热过程既是机械能在介质中转变成热能的能量转换过程。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。

3.理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用:

A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。

B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。

C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。

D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。

E.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。胶原合成及成熟。促进或抑制损伤的修复和愈合过程。从而达到对受损细胞组织进行清理、激活、修复的过程。

量子声学。

超声波还可以进行雷达探测.清洗较为精细的物品,如钟表,可以利用超声波来击碎病人体内胆结石,还可以利用超声波测距.

超声波检测还用于电阻焊的焊点强度的检测。

人耳可以听见的波动,其频率约在16Hz到20KHz之间,如果”波动〃的频率高於此范围,则人类则无法听见,特称之为超音波.所谓”波动〃即为物质中的粒子受外力作用时所产生的机械性振汤.例如将悬挂於弹簧下方的物体向下拉使弹簧伸长,然后将物体放开,则该物体受弹簧力的作用,产生一上下往复性的振动,其偏离静止位置的移动与时间的关系,即为正弦波.

超声波依其波传送方向的波动方式可分为纵波,横波,表面波,蓝姆波四种.其在料件中之传送,根据能量不灭定律,音波在一种物质中传送,或由一种物质传入另一种物质时,由于受到衰减,反射及折射的作用,其能量必然愈来愈弱;但是在材料密度较大的部分,音压却会增大〈但因音阻抗亦变大,能量仍是减少〉,反之在疏松的部分,其音量变大. [编辑本段]相关的文章《夜晚的实验 》— 出自苏教版语文六年级下册

意大利科学家斯帕拉捷习惯晚饭后到附近的街道上散步。他常常看到,很多蝙蝠灵活的在空中飞来飞去,却从不会撞到墙壁上。这个现象引起了他的好奇:蝙蝠凭什么特殊本领在夜空中自由自在的飞行呢?

1793年夏天,一个晴朗的夜晚,喧腾热闹的城市渐渐平静下来。斯帕拉捷匆匆吃完饭,便走出街头,把笼子里的蝙蝠放了出去。当他看到放出去的几只蝙蝠轻盈敏捷地来回飞翔时,不由得尖叫起来。因为那几只蝙蝠,眼睛全被他蒙上了,都是“瞎子”呀。

斯帕拉捷为什么要把蝙蝠的眼睛蒙起来呢?原来,每当他看到蝙蝠在夜晚自由自在的飞翔时,总认为这些小精灵一定长着一双特别敏锐的眼睛,就不可能在黑夜中灵巧的多过各种障碍物,并且敏捷的捕捉飞蛾了。然而事实完全出乎他的意料。斯帕拉捷很奇怪:不用眼睛,蝙蝠凭什么来辨别前方的物体,捕捉灵活的飞蛾呢?

于是,他把蝙蝠的鼻子堵住.结果,蝙蝠在空中还是飞的那么敏捷、轻松。“难道他薄膜似的翅膀,不仅能够飞翔,而且能在夜间洞察一切吗?”斯帕拉捷这样猜想。他又捉来几只蝙蝠,用油漆涂满它们的全身,然而还是没有影响到它们飞行。

最后,斯帕拉捷堵住蝙蝠的耳朵,把他们放到夜空中。这次,蝙蝠可没有了先前的神气。他们像无头苍蝇一样在空中东碰西撞,很快就跌落在地。

啊!蝙蝠在夜间飞行,捕捉食物,原来是靠听觉来辨别方向、确认目标的!

斯帕拉捷的实验,揭开了蝙蝠飞行的秘密,促使很多人进一步思考:蝙蝠的耳朵又怎么能“穿透”黑夜,“听”到没有声音的物体呢?

后来人们继续研究,终于弄清了其中的奥秘。原来,蝙蝠靠喉咙发出人耳听不见的“超声波”,这种声音沿着直线传播,一碰到物体就像光照到镜子上那样反射回来。蝙蝠用耳朵接受到这种“超声波”,就能迅速做出判断,灵巧的自由飞翔,捕捉食物。

现在,人们利用超声波来为飞机、轮船导航,寻找地下的宝藏。超声波就像一位无声的功臣,广泛地应用于工业、农业、医疗和军事等领域。斯帕拉捷怎么也不会想到,自己的实验,会给人类带来如此巨大的恩惠。

超声波焊接——

应用超声波可以对热塑性工件使用熔接、铆焊、成形焊或点焊等多种方法进行焊接。超声波焊接设备既可以独立操作,也可以用于自动化生产环境。那

关于“关于雷达的小知识”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(0)
上一篇 2024年03月05日
下一篇 2024年03月05日

相关推荐