网上有关“数学小知识”话题很是火热,小编也是针对数学小知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
数学小知识
--------------------------------------------------------------------------------
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。
数学知识讲座内容
1. 二年级数学课外小知识
二年级数学课外小知识 1.小学二年级上册数学有哪些知识点
摘要:1.加数+加数=和 因数*因数=积 和—加数=加数 积÷因数=因数
1.加数+加数=和 因数*因数=积
和—加数=加数 积÷因数=因数
被减数—减数=差 被除数÷除数=商
被减数—差=减数 被除数÷商=除数
减数+差=被减数 除数*商=被除数
2.除数>;余数 除数*商+余数=被除数 除数*商=被除数-余数
3.从一点引出两条射线所组成的图形叫作角。
角有一个顶点,两条直边。
一把三角尺有三个角,其中一个是直角。
4.正方体和长方体的特征
共同点:正方体和长方体都有6个面,12条棱和8个顶点。
不同点:(面)正方体的6个面都是正方形。
长方体有6个面都是长方形,也可能相对的两个面是正方形。
正方体的12条棱都相等。
长方体的12条棱不都相等,长方体的12条棱可以分成3组,每组4条棱长度相等,也可以分成2组,一组4条棱长度相等,另一组8条棱长度相等。
关系:正方体是特殊的长方体。
5.至少用8个小正方体才可以拼成一个大正方体。
6.正方形和长方形的特征
共同点:正方形和长方形都有4条边,4个直角,对边相等。
不同点:(边)正方形的4条边相等,也可以说邻边相等。
长方形的对边相等。
关系:正方形是特殊的长方形。
7.至少用4个小正方形才可以拼成一个大正方形。
8.一个平方数的4倍还是一个平方数。
从1开始的连续的奇数的和是一个平方数。
9.一个因数乘几,另一个因数除以几,积不变。
10.任何数与10相乘,只要在这个数的末尾添1个0。
11.任何数与0相乘,积都得0。
0除以任何数不等于0的数,商都是0,所以0不能作除数。
2.小学数学的知识点总结
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 )表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 )周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
3.数学课外小知识
数学知识《几何原本》几 何原本《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响.自它问世之日起,在长达二千多年的时间里一直盛行不衰.它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本.除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比.但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的. 公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料.希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统.首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充.到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础.欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明.他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》.《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的.《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识.第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理.该卷的最后两个命题是毕达哥拉斯定理及其逆定理.这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的.”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了. 第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学.第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理.这些定理大多都能在现在的中学数学课本中找到.第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题.第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一.据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容.他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来.此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐.第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理.第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷.最后三卷,即第十一、十二和十三卷,论述立体几何.目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到.《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系.所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题.《几何原本》成为了两千多年来运用公理化方法的一个绝好典范.诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值.它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语.它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝.哥德巴赫猜想 哥 德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等.第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等.这就是著名的哥德巴赫猜想.它是数论中的一个著名问题,常被称为数学皇冠上的明珠. 实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和.1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题.但是第一个问题至今仍未解决.由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”.1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数.1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。
4.有什么适合二年级小朋友看的数学课外读物,是二年级哦
“从小爱数学”这套书很不错,我儿子二年级,正在看,非常喜欢。下面是当当网对这套书的介绍:
“从小爱数学”绘本曾经荣获第5届韩国出版文化大奖。是韩国儿童数学启蒙的必备用书,同时还是韩国许多小学的数学教材的辅助读物。适合4~10岁儿童阅读。它与目前出版的数学启蒙书相比,是最全面、最系统的、数学知识点涵盖面最广的一套书,而且有科学的排序,让家长有径可循。但是该丛书在讲述数学知识的过程中又很生动活泼,故事十分有趣,让孩子们轻轻松松爱上数学!/productx?product_id=21066742
5.课外数学小知识
一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。
第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。
它是数论中的一个著名问题,常被称为数学皇冠上的明珠。二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。
国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。
陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。
但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。
根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。
三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。
6.课外数学小知识
一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。
二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。
三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。
7.二年级数学学习内容有哪些
从课前、上课、作业、阅读等几个方面对二年级学生提出应重点培养的学习习惯方面的内容。
1、课前:
学生须将数学课本、课堂练习册、演草本、学习用具等准备好并摆放在课桌上;在老师指导下,合理组建学习小组,并复习与本节课有关的旧知识。
2、上课:
学会倾听别人的发言,边听边想,分清重点、非重点;以一定速度默读,边读边思考;积极回答老师提出的问题,回答问题要完整,学会完整地口述解题思路;能独立思考问题,思考时有条理、有根据,敢于质疑问难;能用较准确的数学语言回答问题。小组内学会发挥集体智慧,理顺总结探究过程,小组之间互提建议,在交流中互相学习。
3、作业:
先复习再作业,看清楚题目要求,弄懂题意;作业整洁,书写工整、规范、美观;按时独立完成作业,无抄袭现象;做作业要专心,不边做边玩;能按要求进行检验,掌握验算的一般方法,中高年级做到自觉验算,能根据实际情况灵活合理地进行验算。
4、阅读:
阅读有详有略,有重点、非重点之分;根据自己的兴趣有选择地阅读自己喜欢的数学课外读物。养成自觉阅读教科书和课外读物的习惯;阅读后同学之间能互相交流,有自己的独到见解,喜欢钻研数学问题。
在实施中,每位数学老师根据本班的实际情况将学生分为上、中、下三类,按照三个层次对他们分别提出不同的要求,使每一个学生的数学学习习惯都得到不同程度的提高。尤其对于后进生,教师要针对其不良的习惯,如,计算不仔细,读题不认真,上课不听讲等做耐心细致的工作,多接触、多辅导、多鼓励他们,从改变不良的习惯入手,以养成良好的习惯为突破口,促进其学习方式的转变和学习成绩的提高。
现从下面几方面对二年级学生数学阅读提出具体的要求:
二年级:
①会看懂课文中的注解、法则、结语,并能用准确的数学术语正确表达计算方法、解题思路。
②在阅读过程中初步体验自己提出问题、自己分析问题、自己解决问题的过程。
③初步养成在阅读课本后试做课后习题的习惯。
④在课堂上初步学会带着问题阅读课文,并学着针对自学提纲展开对例题的讨论。
⑤初步学会默读课文。
⑥初步培养克服学习中困难的意志。
8.二年级的数学知识
二年上数学知识点整理 一、乘除法 1、加法与乘法的互换: 一道加法算式可以改写成两道乘法算式,因为交换两个乘数的位置积不变。
如:5+5+5+5=5X4=4X5(这里有一些特殊情况如:3+3+3=3X3这样的加法只能写出一道乘法算式) 一道乘法算式可以改写成两道加法算式,因为一道乘法算式有两种含义。 如:4X6=4+4+4+4+4+4(表示6个4相加) =6+6+6+6 (表示4个6相加) (这里也有一些特殊情况,如:5X5=5+5+5+5+5 这样的乘法算式只能写出一道加法算式。)
2、乘除法各部分名称 5 X 6 = 30 乘数 乘号 乘数 等号 积 30 ÷ 5 = 6 被除数 除号 除数 等号 商 被除数=商*除数 在有余数的除法算式中:被除数=商*除数+余数 积÷一个乘数=另一个乘数 3、乘除法含义 3*2=6 2个3相加的和是6。 3的2倍是6。
3个2相加的和是6。 2的3倍是6。
6÷2=3 把6平均分成2份,每份是3。 6里面有2个3。
6是3的2倍。 把6每2个一份,可以分成3份。
6里面有3个2。 6是2的3倍。
4、乘法口诀:根据一句口诀写出两道乘法算式和两道除法算式。 三四十二 4*3=12 表示3个4相加 3*4=12 表示4个3相加 12÷4=3 表示把12平均分成4分,每份是3. 12÷3=4 也就是12里面有4个3. 表示把12每4个一份,分成了3分 也就是12里面有3个4 乘除法算式的含义要根据题中所给的图形表述,不能死记硬背。
5、乘除法应用题:能正确解答乘除法应用题:把几个相同部分和在一起求总数的时候用乘法计算。把一个整体平均分成若干相等的小份就用除法计算。
6、乘除法算式互换:能进行乘法算式和除法算式的相互改写。在改写的过程中,乘法算式中的积做除法算式中的被除数,而乘法算式中的乘数则做除法算式中的除数和商。
30÷5=6 5*6=30 6*5=30 4*6=24 24÷4=6 24÷6=4 7、倍数问题:先找到关键的句子“ 是 的 倍”。是前边的是大数,是后边的是小数。
也就是大数是小数的 倍。如果求大数就用乘法,求小数就用除法,求倍数也用除法。
(1)“求一个数是另一个数的几倍”用除法计算。 红球有8个,白球有2个,红球的个数是白球的几倍?8÷2=4 (2)“求一个数的几倍是多少”用乘法计算。
红球有8个,白球的个数是红球的2倍。白球有多少个?8*2=16(个) (3)“已知一个数的几倍是多少,求这个数”用除法计算。
红球有8个,是白球个数的2倍。白球有多少个?8÷2=4(个) 8、有余数除法:平均分后有剩余的时候就用有余数的除法算式表示。
34÷5=6……4 读作34除以5等于6余4.其中4叫余数。在有余数的除法算式中,余数一定要比除数小,但是余数不一定比商小。
如:99÷10=9……9 10÷6=1……4 被除数=商*除数+余数 除数=(被除数—余数)÷商 二、观察物体 站在一个角度,最多能看到物体的三个面。(正面、上面、侧面) 侧面分左侧和右侧,在生活中左右两侧看到的物体是不同的。
一个正方体从正面、侧面和上面看到的都是正方形。 能正确画出不同方位看到的平面图形。
三、方向与位置 1、生活中的方向 早晨太阳升起的方向是东,按照顺时针方向依次是东南西北。(要求学生能在生活中找到这四个方向) 当你面向东时,你的后面是西,左面是北右面是南。
当你面向西时,你的后面是东,左面是南右面是北。 当你面向北时,你的后面是南,左面是西右面是东。
当你面向南时,你的后面是北,左面是东右面是西。 2、图纸中的方向:一般图纸都是按照上北下南左西右东绘制的。
在图纸上会有一个向上的箭头标明北。在回答问题前先在图纸上下左右四个方位标上北南西东四个字,然后再回答题中的问题。
如果图纸中出现了其他方向的箭头,请先找到北,并把北面转向上,然后再按照上北下南左西右东的方法找到其他方向,然后再回答问题。 四、时、分、秒 1、钟面上的知识 钟面上有12个数字,12个大格,60个小格。
钟面上时针走1大格是1时。 分针走1小格是1分,分针走1大格是5分。
秒针走1小格是1秒,走1大格是5秒。 时针走1大格分针走1圈,1时=60分。
分针走1小格秒针走1圈,1分=60秒 在1天当中,时针转2圈,分针转24圈。 2、我们学习过的计量单位有: 时间单位:1时=60分 1分=60秒 1日=24时 半小时=30分 1刻钟=15分 1星期=7天 长度单位:1m=100cm 人民币单位:1元=10角 1角=10分 1元=100分 高级单位 低级单位 时 分 秒 M cm 元 角 分 3、单位名称的转换: 单名数 单名数:把高级单位转换成低级单位*进率 把低级单位转化成高级单位÷进率 3m=( )cm 想:1m=100cm 3m就是3个100cm, 100*3=300 所以3m=300cm 50角=( )元 想:10角=1元 50÷10=5,50角里有5个10角,所以50角=5元 单名数 复名数:单名数÷进率=高级单位……低级单位 130分=( )时( )分 想:60分=1时 130÷60=2……10 所以130分=1时10分 205cm=( )m( )cm 想:100cm=1m 205÷100=2……5 所以205cm=2m5cm 65分=( )角( )分 想:10分=1角 65÷10=6……5 所以65分=6角5分 复名数 单名数:高级单位*进率+低级单位 3时55分=( )分 想:1时=60分 3*60+55=235 所以3时55分=235分 2m9cm=( )cm 想:1m=100cm 2*100+9=209 所以2m9cm=209cm 3元4角=( )角 想:1元=10角 3*10+4=34 所以3。
生活中的数学小知识
1. 二年级数学小知识讲座
二年级数学小知识讲座 1.小学数学知识整理
小学一年级 九九乘法口诀表。
学会基础加减乘。小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式 一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面1、单价*数量=总价2、单产量*数量=总产量3、速度*时间=路程4、工效*时间=工作总量5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。10、解比例:。
2.小学二年级数学有哪些内容
人教版小学二年级数学
上册目录
1.长度单位
统一长度单位
认识厘米 用厘米量
认识米 用米量
认识线段
画线段
长度单位的合理选用
2.100以内的加法和减法(二)
(1)加法
100以内的数的加法(不进位)
两位数加两位数(进位加)
两位数加两位数(练习课)
(2)减法
两位数减两位数(不退位减)
两位数减两位数(退位减)
两位数减两位数(练习课)
用数学——求比一个数多几的数
用数学——求比一个数少几的数
(3)连加、连减和加减混和
连加、连减
加减混合
综合练习
简单的两步加减法应用题
整理和复习
3.角的初步认识
角的初步认识
直角的初步认识
锐角和钝角
活动课——用三角尺拼角
4.表内乘法(一)
(1)乘法的初步认识
乘法的初步认识(一)
乘法的初步认识(二)
(2)2~6的乘法口诀
5的乘法口诀
5的乘法口诀(练习课)
2、3、4的乘法口诀
乘加、乘减
6的乘法口诀
6的乘法口诀(练习课)
解决问题——惩罚和假发应用题的区别
整理和复习
5.观察物体(一)
观察物体
观察立体图形
观察物体(练习课)
6.表内乘法(二)
7的乘法口诀
7的乘法口诀(练习课)
综合练习(运用2~7的乘法口诀)
8的乘法口诀
8的乘法口诀(练习课)(一)
8的乘法口诀(练习课)(二)
用乘法解决问题
9的乘法口诀
9的乘法口诀(练习课)(一)
9的乘法口诀(练习课)(二)
乘法竖式
用数学(用口诀解决实际问题)
乘法口诀表
整理和复习
量一量比一比
7.认识时间
认识时间(一)
认识时间(二)——用数学
认识时间(练习课)
8.数学广角——搭配(一)
排列
组合
9.总复习
100以内的笔算加法和减法的复习
表内乘法的复习
米和厘米角和直角的复习
观察物体的复习
认识视角的复习
3.小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。
扩展资料:
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒 百度百科-小学数学知识 百度百科-小学数学。
4.二年级的数学知识
二年上数学知识点整理 一、乘除法 1、加法与乘法的互换: 一道加法算式可以改写成两道乘法算式,因为交换两个乘数的位置积不变。
如:5+5+5+5=5X4=4X5(这里有一些特殊情况如:3+3+3=3X3这样的加法只能写出一道乘法算式) 一道乘法算式可以改写成两道加法算式,因为一道乘法算式有两种含义。 如:4X6=4+4+4+4+4+4(表示6个4相加) =6+6+6+6 (表示4个6相加) (这里也有一些特殊情况,如:5X5=5+5+5+5+5 这样的乘法算式只能写出一道加法算式。)
2、乘除法各部分名称 5 X 6 = 30 乘数 乘号 乘数 等号 积 30 ÷ 5 = 6 被除数 除号 除数 等号 商 被除数=商*除数 在有余数的除法算式中:被除数=商*除数+余数 积÷一个乘数=另一个乘数 3、乘除法含义 3*2=6 2个3相加的和是6。 3的2倍是6。
3个2相加的和是6。 2的3倍是6。
6÷2=3 把6平均分成2份,每份是3。 6里面有2个3。
6是3的2倍。 把6每2个一份,可以分成3份。
6里面有3个2。 6是2的3倍。
4、乘法口诀:根据一句口诀写出两道乘法算式和两道除法算式。 三四十二 4*3=12 表示3个4相加 3*4=12 表示4个3相加 12÷4=3 表示把12平均分成4分,每份是3. 12÷3=4 也就是12里面有4个3. 表示把12每4个一份,分成了3分 也就是12里面有3个4 乘除法算式的含义要根据题中所给的图形表述,不能死记硬背。
5、乘除法应用题:能正确解答乘除法应用题:把几个相同部分和在一起求总数的时候用乘法计算。把一个整体平均分成若干相等的小份就用除法计算。
6、乘除法算式互换:能进行乘法算式和除法算式的相互改写。在改写的过程中,乘法算式中的积做除法算式中的被除数,而乘法算式中的乘数则做除法算式中的除数和商。
30÷5=6 5*6=30 6*5=30 4*6=24 24÷4=6 24÷6=4 7、倍数问题:先找到关键的句子“ 是 的 倍”。是前边的是大数,是后边的是小数。
也就是大数是小数的 倍。如果求大数就用乘法,求小数就用除法,求倍数也用除法。
(1)“求一个数是另一个数的几倍”用除法计算。 红球有8个,白球有2个,红球的个数是白球的几倍?8÷2=4 (2)“求一个数的几倍是多少”用乘法计算。
红球有8个,白球的个数是红球的2倍。白球有多少个?8*2=16(个) (3)“已知一个数的几倍是多少,求这个数”用除法计算。
红球有8个,是白球个数的2倍。白球有多少个?8÷2=4(个) 8、有余数除法:平均分后有剩余的时候就用有余数的除法算式表示。
34÷5=6……4 读作34除以5等于6余4.其中4叫余数。在有余数的除法算式中,余数一定要比除数小,但是余数不一定比商小。
如:99÷10=9……9 10÷6=1……4 被除数=商*除数+余数 除数=(被除数—余数)÷商 二、观察物体 站在一个角度,最多能看到物体的三个面。(正面、上面、侧面) 侧面分左侧和右侧,在生活中左右两侧看到的物体是不同的。
一个正方体从正面、侧面和上面看到的都是正方形。 能正确画出不同方位看到的平面图形。
三、方向与位置 1、生活中的方向 早晨太阳升起的方向是东,按照顺时针方向依次是东南西北。(要求学生能在生活中找到这四个方向) 当你面向东时,你的后面是西,左面是北右面是南。
当你面向西时,你的后面是东,左面是南右面是北。 当你面向北时,你的后面是南,左面是西右面是东。
当你面向南时,你的后面是北,左面是东右面是西。 2、图纸中的方向:一般图纸都是按照上北下南左西右东绘制的。
在图纸上会有一个向上的箭头标明北。在回答问题前先在图纸上下左右四个方位标上北南西东四个字,然后再回答题中的问题。
如果图纸中出现了其他方向的箭头,请先找到北,并把北面转向上,然后再按照上北下南左西右东的方法找到其他方向,然后再回答问题。 四、时、分、秒 1、钟面上的知识 钟面上有12个数字,12个大格,60个小格。
钟面上时针走1大格是1时。 分针走1小格是1分,分针走1大格是5分。
秒针走1小格是1秒,走1大格是5秒。 时针走1大格分针走1圈,1时=60分。
分针走1小格秒针走1圈,1分=60秒 在1天当中,时针转2圈,分针转24圈。 2、我们学习过的计量单位有: 时间单位:1时=60分 1分=60秒 1日=24时 半小时=30分 1刻钟=15分 1星期=7天 长度单位:1m=100cm 人民币单位:1元=10角 1角=10分 1元=100分 高级单位 低级单位 时 分 秒 M cm 元 角 分 3、单位名称的转换: 单名数 单名数:把高级单位转换成低级单位*进率 把低级单位转化成高级单位÷进率 3m=( )cm 想:1m=100cm 3m就是3个100cm, 100*3=300 所以3m=300cm 50角=( )元 想:10角=1元 50÷10=5,50角里有5个10角,所以50角=5元 单名数 复名数:单名数÷进率=高级单位……低级单位 130分=( )时( )分 想:60分=1时 130÷60=2……10 所以130分=1时10分 205cm=( )m( )cm 想:100cm=1m 205÷100=2……5 所以205cm=2m5cm 65分=( )角( )分 想:10分=1角 65÷10=6……5 所以65分=6角5分 复名数 单名数:高级单位*进率+低级单位 3时55分=( )分 想:1时=60分 3*60+55=235 所以3时55分=235分 2m9cm=( )cm 想:1m=100cm 2*100+9=209 所以2m9cm=209cm 3元4角=( )角 想:1元=10角 3*10+4=34 所以3。
5.小学数学学习经验分享:小学生如何学好数学思维
数学是一门非常重要的学科,在我们的日常生活中给予很多的帮助,对于人类经济以及社会的进步也起到了巨大的促进作用。
因此学好数学对我们是至关重要的。而小学数学是我们数学学习的基础,打好基础有限的极为重要,下面来听听专家的意见吧。
低年级的家长朋友请注意—小朋友如何学好数学思维? 很多家长朋友问我,一、二年级的小孩子需要学数学思维吗,需要上辅导班吗,对他们来说是不是太难了?您有这样的疑问并不奇怪,因为您还不了解一、二年级学的是什么,心中自然有困惑。其实要解决这样的疑问并不难,只要亲身感受一下课堂,一个不是以传授知识为主要目的场所,一个启迪智慧,培养兴趣的好途径。
其实,一、二年级的教学都是以故事、诗歌、谜语为载体来开展教学的,对孩子来说是在娱乐中学习,并没有您想象中的枯燥、乏味。在各大教学点我们会陆续开办免费的公益讲座,希望您能多带孩子来参加,解开心中的疑惑,了解和体会小学生的课堂。
小孩子要学习数学,究竟要怎么做呢,家长朋友又该注意些什么呢?其实,很简单,任何阶段的学习都有这样的特点:反复练习。一遍是远远不够的,温故而知新嘛,更何况对于学的快又忘得快的小家伙呢。
他们的耐性当然是不及成年人,一小会儿可能就厌烦了,这时候就要看家长朋友们的了,陪同他定时定点的学习有助于养成良好的学习习惯,和培养坚持不懈意志品质。这其中学习的形式应该是多样化的,家长与孩子比赛呀,让小朋友当老师作讲解呀,或者一同作益智游戏呀。
家长朋友们对待小朋友一定要宽容,看到这您一定笑我,自己的孩子能不疼吗。虽然如此,但我们的家长往往希望自己的孩子出类拔萃、高人一等,这种望子成龙的心态无可厚非,但不可急于求成,过分强求。
比如,您或许会要求您的孩子上课注意听讲,不要溜号,其实小朋友的心理、生理尚未发育完全,他不可能长时间的集中注意力,这时只要老师抓准孩子精力、注意力集中的黄金时间段,把一堂课的主体内容讲解透彻,其他时间孩子即使会有小小放松也不必紧张,不会影响他的学习效果与质量。 家长朋友要允许孩子们的小马虎,孩子毕竟是孩子,他们不是精密的实验仪器,怎么能够不犯错呢?关键是找出错误的原因,而不是一味的斥责,如果是知识点没掌握,必须要及时地与老师交流反馈,以便重新讲解进而学习。
如果只是偶尔的失误则可以通过适当的练习加强对知识的记忆和理解。再者,家长朋友一定不要拿别人的孩子与自己的孩子比,小孩子自尊心强,不要因激励孩子,反而伤害了他。
只要他相对自己是有进步的,就要夸他,鼓励他!好孩子都是夸出来的! 最后,我想对各位家长说,凡事顺其自然,莫强求;如果孩子有兴趣,就多学一些知识,重要的是让他做自己想做的事,给他快乐的童年!! 12参与越多,收获越多!你可能还感兴趣的相关文章正方形的面积公式在平面几何学中,正方形是具有四条相等的边和四个相等内角的多边形。正方形是正多边形的一种,即正四边形。
若S为正方形的面积,C为正方形的周长,a为正方形的边长,则正方形面积计算公式:S =a*a(即a的2次方或a的平方),或S=对角线*对角线÷2.不可错过的原版数学启蒙读物:Mathstart第3级系列汇总三年级上册数学应用题大全(138题)三年级数学应用题大全(72题)小学三年级数学应用题精选。
6.二年级数学学习内容有哪些
从课前、上课、作业、阅读等几个方面对二年级学生提出应重点培养的学习习惯方面的内容。
1、课前:
学生须将数学课本、课堂练习册、演草本、学习用具等准备好并摆放在课桌上;在老师指导下,合理组建学习小组,并复习与本节课有关的旧知识。
2、上课:
学会倾听别人的发言,边听边想,分清重点、非重点;以一定速度默读,边读边思考;积极回答老师提出的问题,回答问题要完整,学会完整地口述解题思路;能独立思考问题,思考时有条理、有根据,敢于质疑问难;能用较准确的数学语言回答问题。小组内学会发挥集体智慧,理顺总结探究过程,小组之间互提建议,在交流中互相学习。
3、作业:
先复习再作业,看清楚题目要求,弄懂题意;作业整洁,书写工整、规范、美观;按时独立完成作业,无抄袭现象;做作业要专心,不边做边玩;能按要求进行检验,掌握验算的一般方法,中高年级做到自觉验算,能根据实际情况灵活合理地进行验算。
4、阅读:
阅读有详有略,有重点、非重点之分;根据自己的兴趣有选择地阅读自己喜欢的数学课外读物。养成自觉阅读教科书和课外读物的习惯;阅读后同学之间能互相交流,有自己的独到见解,喜欢钻研数学问题。
在实施中,每位数学老师根据本班的实际情况将学生分为上、中、下三类,按照三个层次对他们分别提出不同的要求,使每一个学生的数学学习习惯都得到不同程度的提高。尤其对于后进生,教师要针对其不良的习惯,如,计算不仔细,读题不认真,上课不听讲等做耐心细致的工作,多接触、多辅导、多鼓励他们,从改变不良的习惯入手,以养成良好的习惯为突破口,促进其学习方式的转变和学习成绩的提高。
现从下面几方面对二年级学生数学阅读提出具体的要求:
二年级:
①会看懂课文中的注解、法则、结语,并能用准确的数学术语正确表达计算方法、解题思路。
②在阅读过程中初步体验自己提出问题、自己分析问题、自己解决问题的过程。
③初步养成在阅读课本后试做课后习题的习惯。
④在课堂上初步学会带着问题阅读课文,并学着针对自学提纲展开对例题的讨论。
⑤初步学会默读课文。
⑥初步培养克服学习中困难的意志。
1. 生活中有哪些数学知识,请列举,字要多一点
在我们生活的周围有很多的数学问题,这些数学问题贯穿于生活的方方面面,现实生活中,数学游戏有很多,比方说小朋友在打扑克时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏.如“树上七个猴,地上一个猴,一共几个猴.”等等生活中的例子.这些游戏构成了我们生活中五彩缤纷的画卷.我们每天早上一起来,首先是对一天的事情进行一下比较简单的计划,一天中要干哪些事情,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学.一天的工作结束后,接下来的是对这一天进行的小结,小结是通过一个一个的数学运算进行的,运算的结果是一个个比较直观的数字.我们现实生活中,购物、估算、计算时间、确定位置和买卖股票等等都与数学有关.可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具.无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法.特别是随着计算机的普及与发展,这种需要更是与日俱增.无论是我们日常生活中的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持.而且,数学是和语言一样的一种工具,具有国际通用性.可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;城市里的下水道盖都有是圆形的,你知道这是为什么吗?人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面.这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要100条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用.因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影.在一年要结束的时候,商人在谈论中说我这一年的收入是多少,与去年相比怎么样;农民也在谈论这一年中收入多少粮食;工人也在谈论在这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生的学习成绩则是对一位教师一年来辛苦工作的衡量标准;单位也在做这样那样的总结.一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预算、程度等等.总之,生活中的数学可以说是无处不在,数学严重影响着我们的生活,是生活中的重要条件.因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它.。
2. 生活中有哪些数学小常识啊
这是一个有趣的数学常识,做数学报用上它也很不错。
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:
12345679*9=111111111
12345679*18=222222222
12345679*27=333333333
……
12345679*81=999999999
这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是:
12345679*99=1222222221
12345679*108=1333333332
12345679*117=1444444443
… …
12345679*171=2111111109
也是“清一色
3. 生活中的数学学问
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生9生活中。
比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。
我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。
这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。
希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。 生活中的数学 林飞 生活是数学的发源地,是数学的根,因此,数学都能在生活中找到其产生的踪迹。
《数学课程标准》指出:“数学是人们生活、劳动和学习必不可少的工具。”既然数学来源于生活,那么我们的数学教学就不应该只是单纯的知识传授,而应遵循源于生活,寓于生活的理念,让学生体会到数学就在他们身边,感受到数学的趣味和作用。
长期以来,为什么一些学生对数学不感兴趣,甚至对数学学习产生恐惧心理?其主要原因是:数学离学生的生活太远,故使学生感到数学枯燥、抽象难学。现在的新教材克服了这一弊端。
它将数学与生活联系起来,题材丰富多采,呈现形式多样,并引导学生去探究一些数学问题。这一切正符合小学生好奇、好思、喜新的心理特点。
根据新教材的要求,我在教学中竭力让数学贴近儿童的生活,注重满足儿童身心发展的需要。结合本人实践,谈几点认识。
1、素材来源于生活 数学来源于生活,生活中处处有数学。教学时要善于挖掘生活中的数学素材,让数学贴近生活,使学生感受到数学的实用性,对数学产生亲切感。
例如在教学《克和千克的认识》:一开始就从学生身边选择素材并制成录像片段作为课堂引入,这三段录像分别是学生称体重、农民卖菜和在水果摊买水果。使学生通过对熟悉的生活场景的回顾,感受到质量与我们生活的密切联系,消除对这一知识的距离感。
此外,整堂课从教具到学具都取之于学生最熟悉的生活品,当学生看到自己喜欢吃的某一样食品或是非常熟悉的生活必须品出现在课堂上的时侯,那种油然而生的亲切感会使他们的情绪空前高涨,从而激发主动学习的愿望。在练习的环节中,我有意识的布置了一个课后实践题“做爸爸妈妈的小帮手”要求学生利用双休日跟爸爸妈妈到菜场或超市去了解一些物品的重量,并记录下来,从而将我们的数学小课堂和社会这个大课堂联系起来,使学生再一次感悟到数学和生活的联系,并在社会实践中进一不形成和巩固重量概念。
2、注重生活经验 生活经验是儿童数学学习的重要资源。尊重和承认"生活经验是儿童数学学习的重要资源",可以有效地帮助教师改变自己的教学方式,从而促进学生学习方式的转变。
如果对学生已有的生活经验不能正确地加以分析,也许就很难准确地把握住学生学习的"起点",教学很可能会回到"灌输"的老路上去。着力实施一种"基于儿童生活经验的数学教学",也正是数学课程改革的核心理念之一。
4. 生活中的数学知识
在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
5. 生活中的数学小故事100字3篇要快,急
一个星期天的上午,我和爸爸妈妈在家里看电视,电视上正在播放一场蓝球比赛。
看了一会儿,爸爸突然对我说:“祺祺,我来考你一个数学问题,看看你会不会?”我张口就说:“好的,没问题。”爸爸想了一下,说到:“假设红队一分钟投8个球,蓝队一分钟投6个球,他们一起投了8分钟之后,蓝队提高命中率一分钟投10个球,红队由于体力不支减少投球只数一分钟投6个球,问多少分钟后红队和蓝队投进的只数相同?” 我想了一会儿没做出来,过了好长时间他还是没想出来。
时间一分一秒的过去了,我实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算我有草稿本也未必做得出来。
这个时候,妈妈对我说:“原来红队一分钟比蓝队多投进2个,一共投了8分钟,也就是8*2=16(个);后来蓝队反超每分钟比红队多投4个,那么16个球要投几分钟呢?16÷4=4(分钟),要4分钟才能追上。”我说:“原来这么简单!我怎么没想到呢?”爸爸笑着说“简单嘛?这说明你考虑的思路有问题。
在现实生活中,我们要善于去发现事物,找出它们的规律,那你就会觉得生活中的数学比课堂上讲有意思多了。” 通过这件事,我发现生活中的数学确实是无处不在,生活中、学习中到处都有。
从此,我就更加喜欢数学了! 评论(2)3148 其他回答(2) 热心问友 2009-08-04 动物数学 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。
Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。
在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。
而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
参考资料:
阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。
蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。
“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。
珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。
天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报) 评论(1)62 白云 8级 2009-08-04 1.问:用平底锅每次煎两个饼,每煎熟一个饼正反面各需1分钟,因此一只饼从入锅到煎熟共需要2分钟,照这样,煎三个饼到少要用多少分? 答:3分钟。
第一分钟,先煎两个饼; 第二分钟,把一个饼翻过来,取出另一个饼,再放入一个新饼; 第三分钟,取出两面都煎好的一个饼,把另一个饼翻过来,再放入刚才已经煎了一面的饼。 2.问:某地的海水1000千克含盐3千克,1千克海水含盐多少千克?10千克的海水呢? 答:3÷1000=0.003千克 3.问:在日常生活中,我们经常要用一种交通工具——自行车,而自行车的车轮都作成圆形的,你知道为什么吗?能运用有关知识简单说一说车轴为什么要放在轮子的中心处? 答:为了使骑起来平稳 轴心到地面距离要不变,所以轮子是以轴心为圆心的圆,所以自行车的车轮都作成圆形的,车轴要放在轮子的中心处。
评论(1)43 相关知识 有关数学的生活中的小故事 9 2012-06-29 要生活中的数学趣味小故事 4 2013-06-15 数学故事大全 10 2012-06-18 数学小故事(短的) 1 2014-07-06 求10个数学小故事 要短的 6 2013-08-10 更多生活中关于数学的事生活中关于数学的事生活中关于数学的事相关知识>> 相关搜索 生活中的数学小常识生活中的数学故事。
6. 生活中的数学小知识:猫咪睡觉时为什么把
生活中的数学小知识:猫咪睡觉时为什么把身体蜷成团? 一到冬天,一个个“猫饼”、“狗团子”就开始出现了。
.就算室内很暖和,它们还是喜欢团成球。每次看到毛球们团成一个圈圈睡觉,都好想问它们这样头贴着 *** 的奇葩姿势到底舒服嘛!其实维持这个姿势睡觉并不舒服,可是为什么毛球们还喜欢这样呢?今天就和极客数学帮一起去看看生活中的数学科普吧。
睡觉时,我们可以做个试验:先把身体蜷成一团,再将身体伸展开,相信你马上就能得出结论:第一个姿势比较暖和。猫咪睡觉时把身体蜷成团也是这个道理,因为这样能使身体暴露在冷空气中的面积大大缩小,散发的热量也最少,当然也就更暖和。
如果猫咪也是数学家,它就会这样总结: 体积相同时,球体的表面积最小。 当然,猫咪并不懂得什么数学原理,它只是在漫长的时间里进化出了与环境最相宜的行为方式,这是大自然的智慧。
大自然并不偏心,这种美妙的智慧同样也赐予了很多动物、植物。比如蜘蛛就在它的丝网上写下来好多秘密。
蜘蛛网匀称、复杂、美丽,就算是木工师傅使用圆规和直尺也难以媲美,而当科学家用数学方程和坐标系来研究蜘蛛网时,他们惊呆了:平行线段、全等对应角、对数螺线、悬链线和超越线……这些复杂的数学概念,竟然都应用在了这小小的蜘蛛网上——不!与其说是蜘蛛应用了数学原理,倒不如说是人们从蜘蛛网的精妙感受到了大自然的智慧! 比蜘蛛还要小的珊瑚虫,其身体就是一本大自然的史书,它们每天在体壁上记下一条环纹,一年就是365条,遇到闰年就是366条,精确无比。生物学家通过研究发现,e68a843231313335323631343130323136353331333366303739在3.5亿年前,珊瑚虫的身体上每年有400条环纹,这说明当时地球上的一昼夜只有21.9小时,一年有400天。
如果不是这些珊瑚虫,人类又怎能重现几亿年前地球的模样呢? 而我们熟知的黄金分割0.618,也并不是专属于《蒙娜丽莎》和《维纳斯》的——确切地说,是艺术家向大自然学习,才创造出了美的作品。仔细观察一片枫叶,你会发现,它的叶脉长度和叶子宽度的比例,近似0.618。
蝴蝶身长和翅宽的比例,鹦鹉螺壳上相邻螺旋的直径比例,也都接近0.618。 就连我们最喜欢画的图案——五角星,其美感也是从数学而来的。
我们可以找一张正五角星的,拿尺子量一量,算一算。你将会得出一个惊人的结论:五角星上的每一条线段都符合点黄金分割。
而在自然界中,海星、杨桃、茑萝等也都是完美的五角星形。 生活中不缺乏数学,仔细观察,热爱数学,你也是数学家哦。
7. 关于数学的小知识
负数的发现 人们在生活中经常会遇到各种相反意义的量。
比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。
于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。
据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。
这些小竹棍叫做“算筹"算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。
刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。"意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。
刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异"意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。
我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。"这里的“名"就是“号",“除"就是“减",“相益"、“相除"就是两数的绝对值“相加"、“相减",“无"就是“零"。
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。
异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。
" 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。
现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。
在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。
在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。
而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。
3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。
除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。
负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。
而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。
与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。
帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。
英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。
他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?"他列方程56+x=2(29+x),并解得x=-2。
他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。
随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。
关于“数学小知识”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!